ChipFind - документация

Электронный компонент: TLWY7900

Скачать:  PDF   ZIP
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
1
19232
e3 Pb
Pb-free
TELUXTM LED
Description
The TELUXTM series is a clear, non diffused LED for
high end applications where supreme luminous flux is
required.
It is designed in an industry standard 7.62 mm square
package utilizing highly developed (AS) AllnGaP and
InGaN technologies.
The supreme heat dissipation of TELUXTM allows
applications at high ambient temperatures.
All packing units are binned for luminous flux and
color to achieve best homogenous light appearance
in application.
Features
Utilizing (AS) AlInGaP and InGaN technologies
High luminous flux
Supreme heat dissipation: R
thJP
is 90 K/W
High operating temperature:
T
amb
= - 40 to + 110 C
Type TLWR meets SAE and ECE color require-
ments
Packed in tubes for automatic insertion
Luminous flux and color categorized for
each tube
Small mechanical tolerances allow precise usage
of external reflectors or lightguides
TLWR and TLWY types additionally
forward voltage categorized
ESD-withstand voltage:
> 2 kV acc. to MIL STD 883 D, Method 3015.7
for AlInGaP, > 1 kV for InGaN
Lead-free device
Applications
Exterior lighting
Dashboard illumination
Tail-, Stop - and Turn Signals of motor vehicles
Replaces incandescent lamps
Traffic signals and signs
Parts Table
Part
Color, Luminous Intensity
Angle of Half Intensity (
)
Technology
TLWR7900
Red,
V
= 2100 mlm (typ.)
45
AllnGaP on GaAs
TLWO7900
Softorange,
V
= 2100 mlm (typ.) 45
AllnGaP on GaAs
TLWY7900
Yellow,
V
= 1400 mlm (typ.)
45
AllnGaP on GaAs
TLWTG7900
True green,
V
= 900 mlm (typ.)
45
InGaN on SiC
TLWBG7900
Blue green,
V
= 700 mlm (typ.)
45
InGaN on SiC
TLWB7900
Blue,
V
= 330 mlm (typ.)
45
InGaN on SiC
TLWW7900
White,
V
= 650 mlm (typ.)
45
InGaN / TAG on SiC
www.vishay.com
2
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Absolute Maximum Ratings
T
amb
= 25 C, unless otherwise specified
TLWR7900 , TLWO7900 , TLWY7900
TLWTG7900 , TLWBG7900 , TLWB7900 , TLWW7900
Optical and Electrical Characteristics
T
amb
= 25 C, unless otherwise specified
Red
TLWR7900
Parameter
Test condition
Symbol
Value
Unit
Reverse voltage
I
R
= 10
A
V
R
10
V
DC Forward current
T
amb
85 C
I
F
70
mA
Surge forward current
t
p
10 s
I
FSM
1
A
Power dissipation
T
amb
85 C
P
V
187
mW
Junction temperature
T
j
125
C
Operating temperature range
T
amb
- 40 to + 110
C
Storage temperature range
T
stg
- 55 to + 110
C
Soldering temperature
t
5 s, 1.5 mm from body
preheat temperature
100 C/ 30 sec.
T
sd
260
C
Thermal resistance junction/
ambient
with cathode heatsink
of 70 mm
2
R
thJA
200
K/W
Thermal resistance junction/pin
R
thJP
90
K/W
Parameter
Test condition
Symbol
Value
Unit
Reverse voltage
I
R
= 10
A
V
R
5
V
DC Forward current
T
amb
50 C
I
F
50
mA
Surge forward current
t
p
10 s
I
FSM
0.1
A
Power dissipation
T
amb
50 C
P
V
230
mW
P
V
230
mW
P
V
230
mW
P
V
255
mW
Junction temperature
T
j
100
C
Operating temperature range
T
amb
- 40 to + 100
C
Storage temperature range
T
stg
- 55 to + 100
C
Soldering temperature
t
5 s, 1.5 mm from body
preheat temperature
100 C/ 30 sec.
T
sd
260
C
Thermal resistance junction/
ambient
with cathode heatsink
of 70 mm
2
R
thJA
200
K/W
Thermal resistance junction/pin
R
thJP
90
K/W
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
V
1500
2100
3000
mlm
Luminous intensity/Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
d
611
618
634
nm
Peak wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
p
624
nm
Angle of half intensity
I
F
= 70 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 70 mA, R
thJA
= 200 K/W
V
F
1.83
2.2
2.67
V
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
3
Soft Orange
TLWO7900
Yellow
TLWY7900
True green
TLWTG7900
Reverse voltage
I
R
= 10
A
V
R
10
20
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
17
pF
Temperature coefficient of
dom
I
F
= 50 mA
TC
dom
0.05
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
V
1500
2100
3000
mlm
Luminous intensity/Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
d
598
605
611
nm
Peak wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
p
610
nm
Angle of half intensity
I
F
= 70 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 70 mA, R
thJA
= 200 K/W
V
F
1.83
2.2
2.67
V
Reverse voltage
I
R
= 10
A
V
R
10
20
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
17
pF
Temperature coefficient of
dom
I
F
= 50 mA
TC
dom
0.06
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
V
1000
1400
2400
mlm
Luminous intensity/Total flux
I
F
= 70 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
d
585
592
597
nm
Peak wavelength
I
F
= 70 mA, R
thJA
= 200 K/W
p
594
nm
Angle of half intensity
I
F
= 70 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 70 mA, R
thJA
= 200 K/W
V
F
1.83
2.1
2.67
V
Reverse voltage
I
R
= 10
A
V
R
10
15
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
32
pF
Temperature coefficient of
dom
I
F
= 50 mA
TC
dom
0.1
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
V
630
900
1800
mlm
Luminous intensity/Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
d
509
523
535
nm
Peak wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
p
518
nm
Angle of half intensity
I
F
= 50 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 50 mA, R
thJA
= 200 K/W
V
F
4.2
4.7
V
Reverse voltage
I
R
= 10
A
V
R
5
10
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
50
pF
Temperature coefficient of
dom
I
F
= 30 mA
TC
dom
0.02
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
www.vishay.com
4
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Blue green
TLWBG7900
Blue
TLWB7900
White
TLWW7900
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
V
400
700
1250
mlm
Luminous intensity/Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
d
492
505
510
nm
Peak wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
p
503
nm
Angle of half intensity
I
F
= 50 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 50 mA, R
thJA
= 200 K/W
V
F
4.2
4.7
V
Reverse voltage
I
R
= 10
A
V
R
5
10
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
50
pF
Temperature coefficient of
dom
I
F
= 30 mA
TC
dom
0.02
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
V
200
330
630
mlm
Luminous intensity/Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Dominant wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
d
462
470
476
nm
Peak wavelength
I
F
= 50 mA, R
thJA
= 200 K/W
p
460
nm
Angle of half intensity
I
F
= 50 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 50 mA, R
thJA
= 200 K/W
V
F
4.3
4.7
V
Reverse voltage
I
R
= 10
A
V
R
5
10
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
50
pF
Temperature coefficient of
dom
I
F
= 30 mA
TC
dom
0.03
nm/K
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
V
400
650
1250
mlm
Luminous intensity/Total flux
I
F
= 50 mA, R
thJA
= 200 K/W
I
V
/
V
0.7
mcd/mlm
Color temperature
I
F
= 50 mA, R
thJA
= 200 K/W
T
K
5500
K
Angle of half intensity
I
F
= 50 mA, R
thJA
= 200 K/W
45
deg
Total included angle
90 % of Total Flux Captured
100
deg
Forward voltage
I
F
= 50 mA, R
thJA
= 200 K/W
V
F
4.3
5.1
V
Reverse voltage
I
R
= 10
A
V
R
5
10
V
Junction capacitance
V
R
= 0, f = 1 MHz
C
j
50
pF
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
5
Typical Characteristics (Tamb = 25
C unless otherwise specified)
Figure 1. Power Dissipation vs. Ambient Temperature
Figure 2. Forward Current vs. Ambient Temperature
Figure 3. Power Dissipation vs. Ambient Temperature for InGaN
0
25
50
75
100
125
150
175
200
0
20
40
60
80
100
120
T
amb
Ambient Temperature ( C )
15982
P
Power Dissipation ( mW )
V
R
thJA
=200K/W
Red
0
20
40
60
80
100
0
20
40
60
80
100
120
T
amb
Ambient Temperature ( C )
15983
I Forward Current ( mA
)
F
R
thJA
=200K/W
Red
0
25
50
75
100
125
150
175
200
225
250
T
amb
- Ambient Temperature
(
C )
16066
P
-
Power
Dissipation
(
m
W
)
V
R
thJA
= 200 K/W
0
80
20
40
60
100
120
Figure 4. Forward Current vs. Ambient Temperature for InGaN
Figure 5. Forward Current vs. Pulse Length
Figure 6. Rel. Luminous Intensity vs. Angular Displacement
0
10
20
30
40
50
60
16067
I
-
Forward
Current
(
m
A
)
F
Tamb - Ambient Temperature ( C )
0
80
20
40
60
100
120
R
thJA
= 200 K/W
0.01
0.1
1
10
1
10
100
1000
10000
t
p
Pulse Length ( ms )
100
16010
I
Forward
Current
(
m
A
)
F
t
p
/T=0.01
0.02
0.05
0.1
0.2
1
0.5
T
amb
85
C
Red, Softorange,
Yellow
16200
0.4
0.2
0
0.2
0.4
0.6
0.6
0.9
0
30
10
20
40
50
60
70
80
1.0
0.8
0.7
Angular Displacement
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vr
e
l
www.vishay.com
6
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Figure 7. Percentage Total Luminous Flux vs. Total Included Angle
for 90 emission angle
Figure 8. Thermal Resistance Junction Ambient vs. Cathode
Padsize
Figure 9. Forward Current vs. Forward Voltage
0
10
20
30
40
50
60
70
80
90
100
0
25
50
75
100
125
Total Included Angle (Degrees)
16201
%
Tota
lL
uminous
F
l
u
x
R
i
n
K/W
160
170
180
190
200
210
220
230
0
50
100
150
200
250
300
Cathode Padsize in mm
2
16009
thJA
Padsize 8 mm
2
per Anode Pin
0
10
20
30
40
50
60
70
80
90
100
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
V
F
Forward Voltage ( V )
15974
F
I
F
orward
Current
(
m
A
)
Red
Yellow
Figure 10. Rel. Luminous Flux vs. Ambient Temperature
Figure 11. Specific Luminous Flux vs. Forward Current
Figure 12. Relative Luminous Flux vs. Forward Current
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-40
-20
0
20
40
60
80
100
T
amb
Ambient Temperature (
C )
15976
I
F
= 70 mA
Red,
Softorange
Vr
e
l
Re
l
ati
v
e
L
uminous
F
l
u
x
0.1
1.0
1
10
100
I
F
- Forward Current ( mA )
15980
I
-S
pe
c
i
f
i
cL
uninous
F
l
u
x
S
pe
c
Red,
Softorange
0.01
0.1
1
10
1
10
100
I
F
- Forward Current ( mA )
15978
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
Red
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
7
Figure 13. Relative Intensity vs. Wavelength
Figure 14. Relative Intensity vs. Wavelength
Figure 15. Dominant Wavelength vs. Forward Current
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
570 580 590 600 610 620 630 640 650 660 670
- Wavelength ( nm )
16007
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
Red
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
560 570 580 590 600 610 620 630 640 650 660
16314
Soft orange
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
- Wavelength ( nm )
16434
616.0
616.5
617.0
617.5
618.0
618.5
619.0
Red
Dominant
Wa
v
e
l
en
g
th
(
n
m
)
70
60
50
40
30
20
10
0
I
F
- Forward Current ( mA )
Figure 16. Dominant Wavelength vs. Forward Current
Figure 17. Forward Current vs. Forward Voltage
Figure 18. Rel. Luminous Flux vs. Ambient Temperature
16436
603.0
603.5
604.0
604.5
605.0
Softorange
Dominant
Wa
v
e
l
en
g
th
(
n
m
)
70
60
50
40
30
20
10
0
I
F
- Forward Current ( mA )
0
10
20
30
40
50
60
70
80
90
100
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
V
F
Forward Voltage ( V )
15975
F
I
-
Forward
Current
(
m
A
)
Yellow
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-40
-20
0
20
40
60
80
100
15977
I
F
= 70 mA
Yellow
Vr
e
l
Re
l
ati
v
e
L
uminous
F
l
u
x
T
amb
Ambient Temperature (
C )
www.vishay.com
8
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Figure 19. Specific Luminous Flux vs. Forward Current
Figure 20. Relative Luminous Flux vs. Forward Current
Figure 21. Relative Intensity vs. Wavelength
0.1
1.0
1
10
100
I
F
- Forward Current ( mA )
15981
Yellow
I
-S
pe
c
i
f
i
cL
uninous
F
l
u
x
S
pe
c
Vr
e
l
0.01
0.1
1
10
1
10
100
I
F
- Forward Current ( mA )
15979
Yellow
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
540 550 560 570 580 590 600 610 620 630 640
- Wavelength ( nm )
16008
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vr
e
l
Yellow
Figure 22. Dominant Wavelength vs. Forward Current
Figure 23. Forward Current vs. Forward Voltage
Figure 24. Rel. Luminous Flux vs. Ambient Temperature
16435
590.0
590.5
591.0
591.5
592.0
Yellow
Dominant
Wa
v
e
l
en
g
t
h
(n
m)
70
60
50
40
30
20
10
0
I
F
- Forward Current ( mA )
0
10
20
30
40
50
60
70
80
90
100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
V
F
- Forward Current ( V )
16037
True Green
I
F
-
Forward
Current
(
m
A
)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
16056
I
F
= 50 mA
True Green
Vr
e
l
Re
l
ati
v
e
L
uminous
F
l
u
x
T
amb
Ambient Temperature (
C )
-40
-20
0
20
40
60
80
100
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
9
Figure 25. Specific Luminous Flux vs. Forward Current
Figure 26. Relative Luminous Flux vs. Forward Current
Figure 27. Relative Intensity vs. Wavelength
0.1
1.0
1
10
100
I
F
- Forward Current ( mA )
16038
I
-S
pe
c
i
f
i
cL
uminous
F
l
u
x
S
pe
c
True Green
0.01
0.10
1.00
10.00
1
10
100
I
F
- Forward Current ( mA )
16039
True Green
Vre
l
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
460 480 500 520 540 560 580 600 620
- Wavelength ( nm )
16068
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
True Green
Figure 28. Dominant Wavelength vs. Forward Current
Figure 29. Forward Current vs. Forward Voltage
Figure 30. Rel. Luminous Flux vs. Ambient Temperature
521
523
525
527
529
531
533
535
537
539
541
I
F
- Forward Current ( mA )
16301
Dominant
Wa
v
e
l
en
g
t
h
(n
m)
True Green
0
10
20
30
40
50
0
10
20
30
40
50
60
70
80
90
100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
V
F
- Forward Voltage ( V )
16058
F
I
-
Forward
Current
(
m
A
)
Blue Green
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-40
-20
0
20
40
60
80
100
16061
I
F
= 50 mA
Blue Green
Vre
l
-
Re
l
ati
v
e
L
uminous
F
l
u
x
T
amb
- Ambient Temperature ( C )
www.vishay.com
10
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Figure 31. Specific Luminous Flux vs. Forward Current
Figure 32. Relative Luminous Flux vs. Forward Current
Figure 33. Relative Intensity vs. Wavelength
0.1
1.0
1
10
100
16059
Blue Green
I
-S
pe
c
i
f
i
cL
uninous
F
l
u
x
S
pe
c
I
F
- Forward Current ( mA )
0.01
0.10
1.00
10.00
1
10
100
16060
Blue Green
I
F
- Forward Current ( mA )
I
-
Re
l
ati
v
e
L
uminous
F
l
u
x
Vre
l
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
420 440 460 480 500 520 540 560 580 600
16070
I
F
= 50 mA
Blue Green
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
- Wavelength ( nm )
Figure 34. Dominant Wavelength vs. Forward Current
Figure 35. Forward Current vs. Forward Voltage
Figure 36. Rel. Luminous Flux vs. Ambient Temperature
502
503
504
505
506
507
508
509
510
511
16300
Blue Green
Dominant
Wa
v
e
l
en
g
th
(
n
m
)
50
40
30
20
10
0
I
F
- Forward Current ( mA )
0
10
20
30
40
50
60
70
80
90
100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
V
F
- Forward Voltage ( V )
16040
Blue
Truegreen
I
-
Forward
Current
(
m
A
)
F
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
16057
I
F
= 50 mA
Blue
Vre
l
-
Re
l
ati
v
e
L
uminous
F
l
u
x
Tamb - Ambient Temperature ( C )
-40
-20
0
20
40
60
80
100
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
11
Figure 37. Specific Luminous Flux vs. Forward Current
Figure 38. Relative Luminous Flux vs. Forward Current
Figure 39. Relative Intensity vs. Wavelength
0.1
1.0
1
10
100
I
F
- Forward Current ( mA )
16041
Blue
I
-S
pe
c
i
f
i
cL
uninous
F
l
u
x
S
pe
c
0.01
0.10
1.00
10.00
1
10
100
I
F
- Forward Current ( mA )
16042
Blue
Vre
l
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
400 420 440 460 480 500 520 540 560
- W avelength ( nm )
16069
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vre
l
Blue
Figure 40. Dominant Wavelength vs. Forward Current
Figure 41. Forward Current vs. Forward Voltage
Figure 42. Rel. Luminous Flux vs. Ambient Temperature
16299
469
470
471
472
473
Blue
Dominant
Wa
v
e
l
en
g
t
h
(n
m)
50
40
30
20
10
0
I
F
- Forward Current ( mA )
0
10
20
30
40
50
60
70
80
90
100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
V
F
- Forward Voltage ( V )
16062
White
I
-
Forward
Current
(
m
A
)
F
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-40
-20
0
20
40
60
80
100
16065
I
F
= 50 mA
White
Vr
e
l
-
Re
l
ati
v
e
L
uminous
F
l
u
x
Tamb - Ambient Temperature ( C )
www.vishay.com
12
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Figure 43. Specific Luminous Flux vs. Forward Current
Figure 44. Relative Luminous Flux vs. Forward Current
Figure 45. Relative Intensity vs. Wavelength
0.1
1.0
1
10
100
I
F
- Forward Current ( mA )
16063
I
-S
pe
c
i
f
i
cL
uminous
F
l
u
x
S
pe
c
White
0.01
0.10
1.00
10.00
1
10
100
16064
I
-
Re
l
ati
v
e
L
uminous
F
l
u
x
Vr
e
l
White
I
F
- Forward Current ( mA )
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
400 450 500 550 600 650 700 750 800
- Wavelength ( nm )
16071
I
F
= 50 mA
White
I
-
Re
l
ati
v
e
L
uminous
Intensit
y
Vr
e
l
Figure 46. Chromaticity Coordinate Shift vs. Forward Current
0.315
0.320
0.325
0.330
0.335
0.340
0.345
16198
f-
Chromati
c
it
yc
oordinate
shi
f
t(
x,y
)
X
Y
I
F
- Forward Current ( mA )
White
0
60
50
40
30
20
10
TLWB / BG / O / R / TG / W / Y7900
Document Number 83144
Rev. 1.8, 14-Jan-05
Vishay Semiconductors
www.vishay.com
13
Package Dimensions in mm
15984
www.vishay.com
14
Document Number 83144
Rev. 1.8, 14-Jan-05
TLWB / BG / O / R / TG / W / Y7900
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423